Environ Toxicol Chem 2008, 27:1922–1931. 178. Tan XM, Lin C, Fugetsu B: Studies on toxicity of multiwalled carbon nanotubes on suspension rice cells. Carbon 2009, 47:3479–3487. 179. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM,
Luo H, Ke PC: Uptake, translocation, and transmission of carbon nanomaterials in rice plants. DAPT in vivo Small 2009, 5:1128–1132. 180. Torre-Roche RDL, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC: Multiwalled carbon nanotubes and C 60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 2013, 47:12539–12547. 181. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK: Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon ( Momordica charantia ). BMC Biotechno 2013, 13:37. 182. Husen A, Siddiqi KS: Carbon and fullerene nanomaterials
in plant system. J Nanobiotechno 2014, 12:16. 183. Miralles P, Johnson E, Church TL, Harris AT: Multiwalled carbon nanotubes in alfalfa and wheat, toxicology and Inhibitor Library order uptake. J R Soc Inter 2012, 77:3514–3527. 184. Khodakovskaya MV, de Silva K, Nedosekin D, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP: Complex genetic, photothermal, and photoacoustic analysis of nano particle plant interactions. Proc Natl Acad Sci U S A 2011, 108:1028–1033. 185. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H: Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 6:2128–2135. 186. Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC: Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 2010, 6:612–617. 187. Tajbakhsh M: Relationships between electrical conductivity of imbibed seeds leachate and subsequent seedling growth (viabiliy and vigour) in omid wheat. J Agric Set Technol 2000, 2:67–71. 188. Oberdörster E: Manufactured nanomaterials
(fullerenes, C 60 ) induce oxidative stress in the brain of juvenile large mouth bass. Environ Health Perspect 2004, 112:1058–1062. 189. Levi N, Hantgan RR, Lively MO, Carroll DL, Prasad GL: C 60 -fullerenes, detection of intracellular photoluminescence Mannose-binding protein-associated serine protease and lack of cytotoxic effects. J Nanobiotechn 2006, 4:14. 190. Zhu S, Oberdorster E, Haasch ML: Toxicity of an engineered nanoparticle (fullerene, C 60 ) in two aquatic species, Daphnia and fathead minnow. Mar Environ Res 2006, 62:S5-S9. 191. Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A, Loft S, Wallin H: Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C 60 fullerenes in the FE1-Muta™ mouse lung epithelial cells. Environ Mol Mutagen 2008, 49:476–487. 192.