Multiple probes were identified, if possible, for
each species or toxin. The probes identified and designed were synthesised by Inqaba Biotech, Pretoria (Pretoria, South Africa). In addition, the public databases were used to identify toxin-specific probes for genes leading to toxin production for each of the 40 fungi. To test the optimal annealing temperature for array hybridization, monoplex PCR amplifications were carried out for all Adriamycin ic50 the probes identified. The PCR amplifications were performed in a 25 μl volume containing 0.4 μM of each oligonucleotide, 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.5 U Taq polymerase and 1 × reaction buffer (Bioline) and 5 ng template DNA. The PCR amplification consisted of 30 cycles of denaturation at 94°C for 30 sec, oligonucleotide specific annealing click here temperatures varying from 55°C to 60°C for 45 sec depending on the primer used, SC75741 molecular weight and extension at 72°C for 1 min; an initial denaturation step at 94°C for 5 min, and a final extension step at 72°C for 5 min. Aliquots of amplicons were resolved on 1% agarose gels. Array construction Arrays were constructed from 86 uniquely designed species- and toxin-specific oligonucleotide probes. Equal volumes (10 μl each) of
100 pmol/ml oligonucleotide and 100% DMSO were transferred into a 384-well plate (Amersham PharmaciaBiotech) and stored at -20°C. Sixteen replicates of each oligonucleotide were printed onto Vapour Phase Coated Glass Slides (Amersham Pharmacia Biotech)
using a Molecular Dynamics Gen III spotter at the African Centre for Gene Technologies (ACGT) Microarray Facility, University of Pretoria, Pretoria, South Africa http://fabinet.up.ac.za/microarray. Following printing, the slides were allowed to dry overnight at 45-50% relative humidity. Spotted DNA was then bound to the slides by UV cross-linking at 250 for mJ and baked at 80°C for 2 h. The DNA internal transcribed spacer oligonucleotides ITS1, ITS3 and ITS4 served as controls for global normalization and were spotted at concentrations of 50 ng/μl, 100 ng/μl, 150 ng/μl and 200 ng/μl onto the array. Labeling of target DNA For target labeling, DNA was extracted from the forty fungi listed in Table 1 using the DNA extraction procedure described before. Extracted DNA was precipitated in 90% ethanol and 0.9 mM NaAc (pH 5.2) to exclude low-molecular-weight fragments. The precipitate was collected by centrifugation at 3,600 g for 30 min. Two micrograms of DNA was labelled with Cy3 or Cy5 by using a Cy™Dye Post-labelling Reactive Dye Pack (GE Healthcare, UK). Each labelling reaction contained DNA diluted in 5 μl 0.2 M Na2CO3 (pH9) and 2.5 μl Cy5 mono NHS ester 4000 pmol dye resuspended in 12 μl DMSO. The reactions were incubated at room temperature for 90 minutes in the dark.