SMSI and CLB contributed
in the two-hybrid library construction and co-immunoprecipitation experiments. JMS performed the polyclonal antibodies production. MP contributed to the data analysis. AMB performed the macrophage preparation and contributed to the find more real time PCR experiments. CMAS designed the project, contributed to the data analysis and to the preparation of the manuscript. All authors read and approved the final manuscript.”
“Background Antimicrobial peptides (AMP) and peptide-related molecules are widespread in nature in organisms all along the phylogenetic scale, and are considered part of an ancestral innate system of defence against pathogen attack or competition for nutrients [1]. They are small peptides
and proteins learn more with common properties such as direct antimicrobial activity, abundance of cationic and hydrophobic residues, amphipathic conformations and diverse structures. Synthetic AMP have also been SGC-CBP30 concentration either designed de novo on the basis of these properties or identified by means of combinatorial and non-biased approaches. AMP show great potential as alternatives to face the decreasing efficacy of conventional antibiotics in clinic [2, 3], new tools in plant protection [4, 5], or novel food preservatives [6, 7]. In contrast with the hundreds of peptides endowed with antimicrobial activity that are currently known, only a minor proportion of them have been studied in detail in relation to their mechanism of action. Detailed knowledge of mode of action is critical to sustain the potential application of AMP. It was initially considered that
microbial killing was a primary consequence of the in vitro membrane disturbing properties shared by many cationic and amphipathic AMP. Nevertheless, today it is established for a number of peptides that there are also non-lytic modes of action that might involve specific interactions at cell Pregnenolone envelopes and/or with intracellular targets, even among peptides known as potentially membrane-disrupting [8–12]. Significant examples include: the binding of either the peptidic lantibiotic nisin [13, 14] or the amphipathic fungal defensin plectasin [15] to the bacterial peptidoglycan precursor Lipid II; the requirement of plant defensins for the presence of distinct classes of membrane glycolipids [16–18]; the interaction of different AMP with heat shock related proteins [19–21]; or the induction of DNA damage and apoptosis [22–24]. Also, cell penetrating properties are being discovered among peptides previously known as antimicrobials and, reversibly, some penetrating-like peptides show antimicrobial potency [25]. Genome-wide techniques and transcriptional profiles have contributed to the characterization of AMP mechanisms [15].