Bloch equation simulations were performed over a wide range of velocities to evaluate the flow sensitivity of the SSFP-echo signal. Vessel walls of carotid and femoral and popliteal arteries were imaged at 3 T. In two patients with peripheral artery disease the femoral arteries were imaged bilaterally to demonstrate
method’s potential to visualize atherosclerotic plaques. The method was also evaluated as a means to measure femoral artery flow-mediated dilation (FMD) in response to cuff-induced ischemia in four subjects.
Results: The SSFP-echo pulse sequence, which does not have a dedicated blood signal suppression preparation, achieved low blood signal permitting discrimination of the carotid and peripheral arterial walls with in-plane
spatial resolution ranging PKC412 chemical structure from 0.5 to 0.69 mm and slice thickness of 2 to 3 mm, i.e. comparable to conventional 2D vessel-wall imaging techniques. The results of the simulations were in good agreement with analytical solution and observations for both vascular territories examined. Scan time ranged from 2.5 to 5 s per slice yielding a contrast-to-noise ratio between the vessel wall and lumen from 3.5 to 17. Mean femoral FMD in the four subjects was 9%, in good qualitative agreement with literature values.
Conclusions: Water-selective 3D SSFP-echo pulse sequence is a potential alternative to 2D vessel-wall imaging. The proposed method is fast, robust, applicable to a wide range of flow velocities, and straightforward to implement.”
“Background:
selleck kinase inhibitor While metastasis ranks among the most lethal of all cancer-associated processes, on the molecular level, it remains one of the least well Selleck BMS-777607 understood. One model that has gained credibility in recent years is that metastasizing cells at least partially recapitulate the developmental process of epithelial-to-mesenchymal transition (EMT) in their transit from primary to metastatic sites. While experimentally supported by cell culture and animal model studies, the lack of unambiguous confirmatory evidence in cancer patients has led to persistent challenges to the model’s relevance in humans.
Methods: Gene expression profiling (Affymetrix, U133) was carried out on 14 matched sets of primary (ovary) and metastatic (omentum) ovarian cancer (serous adenocarcinoma) patient samples. Hierarchical clustering and functional pathway algorithms were used in the data analysis.
Results: While histological examination reveled no morphological distinction between the matched sets of primary and metastatic samples, gene expression profiling clearly distinguished two classes of metastatic samples. One class displayed expression patterns statistically indistinguishable from primary samples isolated from the same patients while a second class displayed expression patterns significantly different from primary samples.